

SMOPD-C: An Autonomous Vertical Partitioning Technique for Distributed

Databases on Cluster Computers

Liangzhe Li

School of Computer Science

University of Oklahoma

Norman, USA

lzli@ou.edu

Le Gruenwald

School of Computer Science

University of Oklahoma

Norman, USA

ggruenwald@ou.edu

Abstract

Distributed databases on cluster computers are widely

used in many applications. With the volume of data

getting bigger and bigger and the velocity of data getting

faster and faster, it is important to develop techniques

that can improve query response time to meet

applications’ needs. Database vertical partitioning that

splits a database table into smaller tables containing

fewer attributes in order to reduce disk I/Os is one of

those techniques. While many algorithms have been

developed for database vertical partitioning, none of them

is designed to partition the database stored in cluster

computers dynamically, i.e., without human interference

and without fixed query workloads. To fill this gap, this

paper introduces a dynamic algorithm, SMOPD-C, that

can autonomously partition a distributed database

vertically on cluster computers, determine when a

database re-partitioning is needed, and re-partition the

database accordingly. The paper then presents

comprehensive experiments that were conducted to study

the performance of SMOPD-C using the TPC-H

benchmark on a cluster computer. The experiment results

show that SMOPD-C is capable of performing database

re-partitioning dynamically with high accuracy to provide

better query cost than the current partitioning

configuration.

Keywords: vertical partitioning; cluster computer; query

optimizer; physical read mainly queries

1. Introduction

For both centralized databases stored in a single

computer and distributed databases stored in cluster

computers, self-managing database design is becoming

more and more important to many applications. This is

because with the structure of data getting more and more

complex, the size of data getting bigger and bigger, and

the velocity of data is getting faster and faster, it is not

feasible to ask users to manage all the settings in a

database by themselves. Self-managing database systems

are thus needed. Self-managing database algorithms

cover multiple database research areas including self-

managing database indexing ([2] and [3]), self-managing

database caching [4], self-managing database partitioning

[5], self-tuning database parameters [6], etc. In this paper

we present a novel technique, SMOPD-C, for self-

managing database partitioning of distributed databases

stored in cluster computers.

Today with database size getting bigger and bigger like

those in bio-science, finance and medicine, if the database

is not organized properly, such time overhead could yield

unacceptable query response time. Vertical partitioning

and horizontal partitioning are two major database

partitioning techniques which can considerably improve

query response time when physical database design is

performed [7]. Today, most database systems support

horizontal partitioning [8]. The common horizontal

partitioning approaches that are used by most database

developers are range partitioning and hash partitioning

[12]; but it is rare to find a database system that has a

sophisticated algorithm, especially a dynamic algorithm,

to support vertical partitioning without human

interference for distributed databases stored in cluster

computers.

Since the first vertical partitioning algorithm [17] was

developed in early 1970s, a number of different types of

vertical partitioning algorithms have been proposed, such

as [11], [13], [18], [19], [20] and [23]. One common

feature among these algorithms is that they use a fixed

workload to generate the partitioning solution for

database tables. If users want to re-partition the database

tables, they have to review the query log files to select

recent queries which they believe important in order to

perform the re-partitioning task. So these algorithms are

called static vertical partitioning algorithms. It is time-

consuming to review the query log files. If the DBA does

not have solid physical database design knowledge or is

not careful enough, the workload used to re-partition the

database tables might not be accurate and will even

generate a worse partitioning solution. To solve this

problem, some dynamic vertical partitioning algorithms

([5] and [23]) have been proposed in recent years.

 A dynamic vertical partitioning algorithm has the

ability to monitor the incoming queries and automatically

re-partition the database tables when their partitions do

not perform well any more. The algorithms [5] and [23]

are dynamic and designed for a centralized database

stored in a single computer. However, in recent years,

cluster computers have been widely adopted by many

organizations to handle their distributed databases. A

cluster computer consists of a collection of interconnected

stand-alone computers working together as a single,

integrated computing resource [15]. A network composed

of many cluster computers can provide excellent

computing performance for distributed databases with low

cost. So how to optimize the physical database design on

a cluster computer system becomes extremely important,

and database partitioning on a cluster system is one of

those important research topics in the physical database

design area. Unfortunately, the algorithms presented in

[5] and [23] do not give any clue on that. In order to fill

the gap, a novel vertical partitioning algorithm called

SMOPD-C is presented in this paper. It is a dynamic

algorithm providing multiple vertical partitioning

solutions and designed for a distributed database system

running on a cluster computer. The paper also presents the

results of the experiments that are conducted to study the

performance of SMOPD-C using the TPC-H benchmark

[9].

The rest of the paper is organized as follows. Section

2 discusses the related work. Sections 3 and 4 present

SMOPD-C and its experimental results, respectively.

Finally Section 5 concludes the paper with future

research.

2. Related Work

 A good number of algorithms that can vertically

partition databases on a single computer have been

proposed in the literature. Some of them are static ([11],

[13], [16], [17], [18] and [19]) and some of them are

dynamic ([1], [5] and [22]). A few algorithms exist to

partition distributed databases on cluster computers ([21],

[24], [26], [14] and [16]).

 In [24], a database schema level partitioning algorithm,

called ElasTras, was introduced. The key idea of database

schema level partitioning is that for a large number of

database schemas and applications, transactions only

access a small number of related rows which can be

potentially spread across a number of database tables.

ElasTraS takes the root database table of a tree structure

database schema as the primary partitioning database

table and other nodes of the tree as the secondary

partitioning database tables. The primary partitioning

database table is partitioned independently of the other

database tables using its primary key. Because the

primary database table’s key is part of the keys of all the

secondary database tables, the secondary partitioning

database tables are partitioned based on the primary

database table’s partition key. Then all partitions will be

spread across several Owning Transaction Managers,

which own one or more partitions and provide

transactional guarantees on them. Analyzing a database

schema is much more difficult than analyzing a database

table and this algorithm is generally configured for static

partitioning purposes.

 In [26], the authors proposed an algorithm called

FINDER that aims to find the optimal data distribution

policy for a set of database tables. The assumption of this

algorithm is that the workload is given and the future

workload should be very similar to the one used by the

algorithm; so it is a static algorithm. For a given database

table set T = {T1, …,Tt}, this algorithm can find the

distribution policy D = {X1, …, Xt} where Xi is a set of

attributes (usually they are the primary keys) and Ti is

distributed based on Xi. The tuples of a database table

will be assigned to different segments according to the

hash value of Xi. This algorithm is used to statically and

horizontally partition the database tables.

Generally an OLAP application contains lots of many-

row aggregates and likely benefit from parallelizing its

queries on multiple sites and exchanging small sub results

between the sites after the aggregations. It means that the

queries happening on such system are usually very

complex. In an OLTP application, on the other hand, there

are many short queries with no many-row aggregates or

few-row aggregates and the queries only gather all

attributes from the same site. It means that the queries

happening on such system are usually very simple. The

Amossen algorithm [14] is a partitioning algorithm used

only on OLTP applications. In [14] the authors present a

cost model and then use simulated annealing to find the

close-to-optimal vertical partitioning with respect to the

cost model. In this algorithm, the queries must be very

simple and have to avoid breaking single-sitedness. So we

can also regard this algorithm as a static algorithm.

 In [16] and [21], a table level partitioning algorithm,

called AutoClust, was presented. This algorithm uses

query optimizer to generate partitioning solutions.

According to the authors’ ideas, multiple partitioning

solutions are selected from the candidate partitioning

solution pool. Every future incoming query will be routed

to the computing node containing the partition that gives

the best estimated query cost for the query execution.

There are 7 steps in the AutoClust algorithm when it

works on cluster computers. In Step 1, an attribute usage

matrix is built based on a query set indicating which

query accesses which attributes. In Step 2, the closed item

sets (CIS) [10] of attributes are mined. An item set is

called closed if it has no superset having the same support

which is the fraction of queries in a data set where the

item set appears as a subset [10]. CIS can tell us which

attributes are accessed by the same set of queries. We

want to keep such attributes in the same partition together

as much as possible. In Step 3, augmentations to add the

primary key of the original database table to each existing

closed item set are done to form the augmented closed

item set (ACIS) which is a combination of CIS and the

primary key; then duplicate ACIS are removed. In Step 4

an execution tree is generated where each leaf represents

a candidate vertical database partitioning solution. In Step

5, the solutions are submitted to the query optimizer of

the database system in order to determine what solutions

are better. In Step 6, the suitable solutions are distributed

to different computing nodes so that each node carries a

solution. Finally, a query routing table, which maps each

query type to a unique computing node that has the best

partitioning solution for that specific query type, is built

so that a query can always be routed to a node with the

best partitioning solution (the detail information of how to

construct the query routing table can be found in [21]).

This algorithm uses a fixed query set as the algorithm

input and mines CIS from that query set to generate

multiple partitioning solutions. This algorithm runs only

once; if users want to do re-partitioning they have to

monitor the database performance and trigger AutoClust

by themselves. So this algorithm is a static algorithm, too.

To the best of our knowledge, while there are static and

dynamic database vertical portioning algorithms designed

for databases on a single computer and some static

algorithms for databases on cluster computers. There

exists no partitioning algorithm designed to vertically and

dynamically partition database tables on cluster

computers. In the next section we present our SMOPD-C

algorithm, the first vertical partitioning algorithm that can

dynamically partition distributed databases stored in a

cluster computer.

3. SMOPD-C

In SMOPD-C, we treat all computing nodes as a whole

system together. One computing node will be used as a

control node to count how many queries have been

processed by the cluster computer so that SMOPD-C can

start to check the performance trend for each computing

node in the cluster computer once enough queries are

collected on it. We use the estimated query cost to

represent the query response time. For each computing

node, if a database table’s current partitions’ average

estimated query cost of the current query set is larger than

the average estimated query cost of the old query set that

is used to generate the current partitions for this database

table, then we say that the performance of the current

partitions of this database table might not be good any

more. If the performance of a database table’s partitions

on the majority of the computing nodes is not good, then

we say the average performance of the entire cluster

computer is not good. We measure the average

performance of all computing nodes and decide whether

re-partitioning is needed or not. If the average

performance is bad, the control node will trigger Filtered

AutoClust, which is an advanced version of AutoClust

[16], to repartition the corresponding database table.

From the description above, we can see there are two

major components in SMOPD-C: the current partitions’

performance checking component and the database re-

partitioning component. The current partitions’

performance checking component is deployed on every

computing node. The major function of this component is

to monitor the performance trend of the current partitions

for each node and make the correct re-partitioning

decisions. The database re-partition component is

deployed on the control node. The major function of this

component is to invoke the Filtered AutoClust algorithm

to statically partition distributed database tables on a

cluster computer using the table set and query set

collected by the current partitions’ performance checking

component.

In the following two subsections we will describe how

each component works using an example. In the example

we deploy the TPC-H benchmark database [9] on a

cluster computer with 8 computing nodes. The TPC-H

database benchmark consists of twenty two query types

and eight database tables, ORDERS, CUSTOMER,

LINEITEM, PART, SUPPLIER, PARTSUPP, REGION

and NATION; however, in our research we use only the

first six tables as the last two tables are too small to

benefit from partitioning. We show how our SMOPD-C

algorithm works on the PART database table which has

the following schema PART (P_COMMENT,

P_PARTKEY, P_BRAND, P_CONTAINER, P_SIZE,

P_TYPE, P_NAME, P_MFGR, P_RETAILPRICE).

Before we run this algorithm, we need to partition the

PART database table once. The query set we use is

randomly selected from the TPC-H query types. The

partitioning solutions we got are S1 and S2 as listed

below.

Candidate solution S1: [{P_COMMENT,

P_PARTKEY}, {P_MFGR, P_PARTKEY},

{P_PARTKEY, _RETAILPRICE}, {P_BRAND,

P_PARTKEY, P_SIZE,P_TYPE}, {P_CONTAINER,

P_PARTKEY}, {P_NAME, P_PARTKEY}].

Candidate solution S2: [{P_COMMENT,

P_PARTKEY}, {P_MFGR, P_PARTKEY},

{P_PARTKEY, P_RETAILPRICE}, {P_BRAND,

P_CONTAINER, P_PARTKEY}, {P_NAME,

P_PARTKEY}, {P_PARTKEY, P_SIZE},

{P_PARTKEY,P_TYPE}].

Table 1. Estimated query costs of two partitioning solutions on different nodes

Node Candidate

Solution

Est. cost

(Query 8)

Est. cost

(Query 9)

Est. cost

(Query 14)

Est. cost

(Query 15)

Est. cost

(Query 16)

Est. cost

(Query 19)

Node1 S1 354 339 354 354 1054 339

Node2 S2 246 339 246 2135 250 339

Node3 S1 354 339 354 354 1054 339

Node4 S2 246 339 246 2135 250 339

Node5 S1 354 339 354 354 1054 339

Node6 S2 246 339 246 2135 250 339

Node7 S1 354 339 354 354 1054 339

Node8 S2 246 339 246 2135 250 339

Table 2. Query set used to re-partition database tables

Query

No.
Freq. %

Average

Physical Read

Ratio

Query

Count
Query Text

1 14.5% 27% 36 SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY……

2 6.7% 50% 16 SELECT L_RETURNFLAG, L_LINESTATUS, SUM(L_Q….

3 9.3% 50% 23 SELECT L_ORDERKEY, SUM(L_EXTENDEDPRICE……

4 9.9% 51% 24 SELECT O_ORDERPRIORITY, COUNT(*) AS ORDER……

5 12.6% 50% 31 SELECT N_NAME, SUM(L_EXTENDEDPRICE * (1 - L_DIS……

6 3.6% 50% 9 SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS……

7 10.3% 50% 25 SELECT SUPP_NATION, CUST_NATION, L_YEAR……

8 5.8% 61% 14 SELECT O_YEAR, SUM(CASE WHEN NATION = 'BRAZIL'……

9 7.1% 57% 17 SELECT NATION, O_YEAR, SUM(AMOUNT) AS SUM_……

10 3.7% 50% 9 SELECT C_CUSTKEY, C_NAME, SUM(L_EXTENDED……

11 9.7% 47% 24 SELECT PS_PARTKEY, SUM(PS_SUPPLYCOST * PS_AV……

13 2.9% 51% 7 SELECT C_COUNT, COUNT(*) AS CUSTDIST FROM ……

15 3.9% 5% 10 SELECT P_BRAND, P_TYPE, P_SIZE, COUNT(DISTINCT ……

 The way of deploying the two partitioning solutions on

the cluster computer is shown in Table 1. In Table 1 we

can see the estimated cost of each query for each

computing node.

 Once the current partitions are constructed, SMOPD-C

can be started. Below are the details of the two

components of this algorithm.

3.1. Current Partitions’ Performance Checking

Component

This component running on each computing node

monitors the most recent queries processed by that

computing node. This process can be done by reading the

system views which contain the query information (for

example, in SQL Server [28], the system view is

SYS.DM_EXEC_QUERY_STATS; in Oracle [29] the

system view is V_$SQLAREA). Then this component

will calculate how many queries it needs to collect so that

it can ensure that there are enough physical read mainly

queries to be analyzed. Physical read mainly queries are

those queries which access most data from hard disk

rather than main memory [22]. Once the component

collects enough physical read mainly queries, it will use

this query set to estimate the performance of the current

partitions of each database table on each node. If the

performance of a database table’s partitions on the

majority of the computing nodes is not good, this database

table will be passed to the database re-partition

component on the control node for re-partitioning

preparation. The process can be summarized in the

following steps using the example mentioned at the

beginning of Section 3.

 Step 1: estimate the number of queries N that needs to

be collected using the formula

 [22], where is the precision, is

the function of confidence level α, fn is the ratio threshold

of number of queries that satisfies physical read ratio

threshold of a query. We randomly select 60% of the

query types from the TPC-H benchmark query type set

with a random frequency for each query type. So we get

the query type set as shown in Table 2.

Step 2: collect queries’ information (query id, physical

read ratio, logical read ratio, count, query context) from

the system views of the DBMS on each computing node

until N queries are collected.

Step 3: simplify and filter queries, and put the result

queries into a set FQS. Simplifying queries rewrites each

query into a simple format which contains only the

original table name followed by the attributes accessed by

the query, and filtering queries removes logical mainly

read queries and outlier queries from the query set as

logical read mainly queries and outlier queries will not be

impacted by database partitioning [22].

Step 4: evaluate the performance of the current

partitions for each database table on each computing

node. In this step the new average estimated query cost

for the current partitions on each computing node is

calculated and shown in Table 3. We can see that the

current partitions’ performance is getting worse due to the

query set changes on node 1, node 3, node 5, node 7 and

node 8.

Step 5: evaluate the average performance of each

database table on all nodes and put the database table

whose current partitions’ average performance on more

than half of the nodes is not good any more in a set T on

the control node.

From Table 3 we can see that for the PART database

table, 62.5% of the computing nodes do not perform well

using the current partitions and should be re-partitioned.

The algorithm of this component is shown in Figure 1.

Table 3. Different cost results of the partitioning
solutions on different nodes

Node Candidate

Solution

New Average

Cost

Current

Average Cost

Total

Cost

Node1 S1 53 30 689

Node2 S2 11 36 286

Node3 S1 42 30 672

Node4 S2 20 36 420

Node5 S1 42 30 672

Node6 S2 32 36 832

Node7 S1 42 30 672

Node8 S2 37 36 851

Input parameters:
1. Physical read ratio threshold of a query- r

2. The ratio threshold of number of queries that satisfies r- fn

3. Query frequency threshold- ft (a query must occur at least
ft percent in the whole query set)

4. Precision-
5. Confidence level- α

Output:

database table which needs re-partitioning and the physical read
mainly query set

Step1: calculate N which is the number of queries that need to be

collected

1

Step 2: monitor the queries that are processed on each node since

the last partitioning until N queries are reached

2 while less than N queries have been processed

3 continue monitoring

4 end while

Step 3: simplify and filter queries, put the result queries into a set

FQS

Step 4: evaluate the performance of current partitions for each

database table on each node.

5 let pi to be the performance of the current partitions of a

database table on node i
6 set pi to 1 if the performance is still good, otherwise set it to 0

Step 5: evaluate the average performance of each database table

on all nodes

7 if
∑

 , where n is the total number of computing

nodes

8 invoke Filtered AutoClust of the database re-partitioning
component on the control node

9 else

10 goto step 2
11 end if

Figure 1. Algorithm for the current partitions’
performance checking component

3.2. Database Re-Partitioning Component

This component is used to re-partition the database

tables that are recorded due to bad performance of their

current partitions. The Filtered AutoClust algorithm is

invoked when the performance of a database table’s

partitions on the majority of the computing nodes is not

good. Filtered AutoClust is an improvement of AutoClust

[21], a static vertical partitioning algorithm based on

closed item set mining which we have described in

Section 2. Filtered AutoClust improves AutoClust’s

execution time by removing unnecessary closed item sets,

removing over-partitioned candidate solutions and

distributing the remaining candidate solutions to the query

optimizers on the computing nodes so that the query

optimizers can estimate the query costs for the candidate

solutions in parallel. Filtered AutoClust consists of the

following steps:

 Step 1: generate the attributes usage matrix.

 Step 2: generate the set of attribute set As and the

corresponding frequency set Fs for each query based on

the attribute usage matrix.

Step 3: mine the closed item sets from the matrix

generated in Step 1.

Step 4: filter the CIS set based on As and Fs in order to

remove unnecessary CIS.

4.1. Remove the attribute set from As whose

frequency is below the average frequency.

4.2. For each attribute set Asi in the new As remove

its subset in the CIS set to form the new CIS set.

 4.3. Union the new As and the new CIS set to get the

final CIS set.

Step 5: augment each subset in the final CIS set by

adding the primary key to form the augment closed item

set (ACIS). Remove the duplicate subsets in the ACIS

set.

Step 6: generate the execution tree where each leaf

represents a candidate vertical partitioning solution.

 Step 7: distribute the candidate vertical partitioning

solutions in the round robin order to each computing node

to calculate the aggregate cost (average estimated query

cost) for each solution using the query optimizer on each

node. Then send the solutions with their costs back to the

control node.

 Step 8: rank the solutions in increasing order based on

their aggregate costs and remove those solutions the costs

of which are larger than the cost of No Partition.

 Step 9: implement the solutions resulted from Step 7

according to the increasing order of the solutions’

aggregate costs so that the best solution is implemented

on the first node, the second best solution is implemented

on the second node, and so on.

Step 10: construct the query routing table for the

solutions implemented in Step 8 so that the system can

know which query should be executed on which node.

1

2

3

4
5

6

7
8

9
10

11

12

13

14
15

16

17

18

19
20

Run Steps 1-2 of AutoClust for one node to generate the

attribute usage matrix and CIS set;
Create the maximum attributes set As for each type of query

and the corresponding frequency set Fs from the attribute

usage matrix;
Set filter query frequency threshold fi as 100%/Fs.size;

//find out the important queries

For each frequency Fsi in Fs
 if Fsi< fi then

 remove the corresponding sub attribute set in As

 End if
End for

//filter CIS set

For each set CISi in CIS
 if CISi is a subset of any set in As then

 remove CISi from CIS

 End if

End for

//expand CIS by adding As to it to avoid losing attributes

Union As and CIS to form the final CIS
Run step 3-4 of AutoClust for one node to generate the set S of

all possible partitioning solutions;

Distribute solutions in S in round robin order to each
computing node

For each computing node

Calculate the average query estimated cost for each solution
and send all solutions with their average query estimated

cost back to control node

End for
Run step 2-5 of AutoClust for cluster computers to finish the

best solutions implement on each computing node.

Figure 2. The Filtered AutoClust algorithm on
cluster computers

The pseudo code of the Filtered AutoClust algorithm is

shown in Figure 2.

 Once we re-partition the PART database table, we get

the following partitioning solutions S1_new and S2_new

as the follows:

 New partitioning solution S1_new:

[{P_COMMENT,P_PARTKEY},{P_CONTAINER,P_P

ARTKEY},{P_PARTKEY,P_RETAILPRICE},{P_BRA

ND,P_PARTKEY,P_SIZE,P_TYPE},{P_MFGR,P_PAR

TKEY}, {P_NAME,P_PARTKEY}]

 New partitioning solution S2_new:

[{P_COMMENT,P_PARTKEY},{P_CONTAINER,P_P

ARTKEY},{P_PARTKEY,P_RETAILPRICE},{P_BRA

ND,P_PARTKEY},{P_MFGR,P_PARTKEY,P_SIZE,P_

TYPE}, {P_NAME,P_PARTKEY}]

These two new solutions will be implemented on 8

computing nodes in a round robin order, i.e. S1_new will

be implemented on node 1, node 3, node 5 and node 7;

S2_new will be implemented on node 2, node 4, node 6

and node 8. The query routing table will be reconstructed

according to the new partitioning solutions.

4. Experimental Performance Studies

 In this section we present our experiment results

comparing the performance of the new partitions

generated by SMOPD-C and that of the current partitions.

Our test was conducted on the cluster computer OSCER

BOOMER [25] at the University of Oklahoma. We use

the TPC-H benchmark [9] database tables and queries for

our test, and all the TPC-H database tables are fully

replicated on the Oracle database system on the cluster

computer. We set the five parameters in SMOPD-C, a

(confidence level), ca (precision), r (physical read ratio

threshold), fn (ratio threshold of number of queries that

satisfies r), and ft (query frequency threshold) to 95%,

5%, 20%, 20% and 100%, respectively.

4.1. Impact of Number of Computing Nodes

In this experiment we study the impact of number of

computing nodes. We use the PART database table as the

test database table. We first measure the final estimated

query cost for the current partitions based on the new

query set and then measure the average estimated query

cost for the new partitions based on the new query set. If

the average estimated query cost of the new partitions is

less than the average estimated query cost of the current

partitions with the same number of computing nodes, then

we say that the re-partitioning action was successfully

done; otherwise the re-partitioning action is an

unnecessary run. The test results presented in Figure 3

show that when the number of computing nodes

increases, the average estimated query costs of both the

current partitions and the new partitions decrease for the

PART database table. This is because all computing

nodes are running in parallel and less work will be

processed by each computing node if more computing

nodes are available. For the same number of computing

nodes, the average estimated query cost of the new

partitions is always less than the average estimated query

cost of the current partitions. This means that our

algorithm is always able to find out when re-partitioning

is needed and the re-partitioning results always provide

better query response time than the current partitions.

Figure 3. Impacts of the number of computing
nodes for the PART database table

4.2. Impact of Different Table Sizes

In this experiment we study the impact of the database

table size by measuring the performance for the six

0

10000

20000

30000

40000

0 10 20 30

new partitions

old partitions

A
v

erag
e q

u
ery

 estim
ated

 co
st

Number of nodes

largest tables in the TPC-H benchmark. We set the

number of computing nodes to 8. From Figure 4 we can

see that there is no performance improvement for the

ORDERS database table. This is because the performance

of more than half of the computing nodes is still good

even the query set has been changed for the ORDERS

database table, so re-partitioning is not triggered for this

database table; the new partitioning solution of the PART

database table gives the best performance improvement

comparing with its current partitioning solution; the

average estimated query cost improvement for an

individual table is from 8% to 74%; and the average

improvement for all database tables together is 38%.

From the test results we can see that our algorithm works

well on cluster computers.

Figure 4. Impacts of different database table
sizes on 8 computing nodes

5. Conclusions

 In this paper, we presented an efficient algorithm,

SMOPD-C, which can dynamically partition a distributed

database vertically on cluster computers. SMOPD-C

keeps monitoring the most recent queries processed by

each computing node and reading the related query

information (query id, query context, physical read ratio,

logical read ratio, and query count) from the system views

until enough physical read queries are collected. Then

SMOPD-C uses the query set collected, passes it to the

query optimizer to calculate the current partitions’

average query estimated cost, and compares this cost with

the old cost based on the old query set which was used to

generate the current partitions. If the new cost is bigger

than the old cost on the majority of the computing nodes,

then SMOPD-C will invoke the Filtered AutoClust

algorithm that applies the attribute-usage matrix and

closed item set mining concepts on the new query set to

re-partition the corresponding database table, producing

one or more new vertical partitioning solutions. SMOPD-

C will then implement the new partitioning solutions on

different computing nodes and repeat the process to

continue monitoring the most recent queries to make the

next re-partitioning decisions. The experimental results

using the TPC-H benchmark and the Oracle database

system on a cluster computer show that SMOPD-C

algorithm can make suitable decisions for re-partitioning

action at the correct time, and can accurately generate one

or more better re-partitioning solutions based on the most

recent query set.

For future work, we plan to extend our research in

several directions. In the re-partitioning process, there are

two major overheads in our current algorithm. The first

overhead is the computation work in order to find out all

closed item sets for a particular database table based on a

specific query set. The second overhead is that some

useless temporary partitions will be physically created in

order to evaluate the estimated query cost for a particular

partitioning solution. Those two overheads can consume a

lot of time when the algorithm is running. However,

since our algorithm is running on cluster computers, those

two overheads can be reduced by parallelizing the

computation work across many computing nodes. This

task will be included in our future work. In addition, we

will extend SMOPD-C to relational clouds [27]. In a

relational cloud, the working environment is a resources

sharing and multi-tenants environment. The partitioning

and re-partitioning actions for one tenant may impact the

virtual machine-hardware assignments and the query

performance of other tenants. SMOPD-C will need to be

modified to address this issue in order to satisfy the

service level agreements (SLAs) for all tenants.

6. Acknowledgement

This work is supported in part by the National Science

Foundation grant number CCF-0954310.

7. References

[1] Rodriguez, L., Li, X., Cuevas-Rasgado, D. A., Garcia-

Lamont, F., DYVEP: An Active Database System with Vertical

Partitioning Functionality, Networking, Sensing and Control

(ICNSC), 10th IEEE International Conference, 2013.

[2] Schnaitter, K., and Polyzotis, N., Semi-Automatic Index

Tuning: Keeping DBAs in the Loop, Proceedings of Very Large

Data Bases (PVLDB), 5(5):478–489, 2012.

[3] Schnaitter, K., Abiteboul, S., Milo, T., and Polyzotis, N.,

On-line Index Selection for Shifting Workloads. In International

Workshop on Self-Managing Database Systems, pages 459–468,

2007.

[4] Rodd, S. F., and Kulkrani, U. P., Adaptive Tuning Algorithm

for Performance tuning of Database Management System,

International Journal of Computer Science and Information

Security, Vol. 8, No. 1, April 2010.

[5] Jindal, A., and Dittrich, J., Relax and Let the Database do the

Partitioning Online. In Business Intelligence for Real Time

Enterprise (BIRTE), September 2011.

0%

20%

40%

60%

80%

SUPPLIER CUSTOMER ORDERS PART PARTSUPP LINEITEM

A
v

erag
e p

erfo
rm

an
ce

im
p

ro
v
em

en
t

Database tables

[6] Duan S., Thummala V., and Babu S., Tuning Database

Configuration Parameters with Ituned, Proceedings of Very

Large Data Bases (PVLDB), vol. 2, pp. 1246–1257, August

2009.

[7] Agrawal, S., Narasayya, V., and Yang, B., Integrating

Vertical and Horizontal Partitioning into Automated Physical

Database Design, Special Interest Group on Management of

Data (SIGMOD), June 2004.

[8] Rodriguez, L. and Li, X., A Dynamic Vertical Partitioning

Approach for Distributed Database System, Systems, Man, and

Cybernetics (SMC), IEEE International Conference 2011.

[9] http://www.tpc.org.

[10] Pasquier, N., Bastidem, Y., Taouil, R. and Lakhal, L.,

Efficient Mining of Association Rules Using Closed Item set

Lattices, Information Systems, Vol. 24, No. 1, 1999.

[11] Abuelyaman, E., S., An Optimized Scheme for Vertical

Partitioning of a Distributed Database, International Journal of

Computer Science and Network Security (IJCSNS), Vol.8,

No.1, 2008.

[12] Ghandeharizadeh S. and DeWitt D. J., Hybrid-range

partitioning strategy: A new declustering strategy for

multiprocessor database machines. In Very Large Data Bases

(VLDB), pages 481–492, 1990.

[13] Navathe, S., Ceri, S., Wierhold, G. and Dou, J., Vertical

Partitioning Algorithms for Database Design, ACM

Transactions on Database Systems, Vol. 9, No. 4, December

1984.

[14] Rao, J., Zhang, C., Megiddo, N., and Lohman, G. M.,

Automating Physical Database Design in a Parallel Database. In

Special Interest Group on Management of Data (SIGMOD),

page 558-569, 2002.

[15] Baker, M. Cluster Computing at a Glance, Chapter 1, High

Performance Cluster Computing: Architectures and Systems,

Vol. 1, Prentice Hall, 1st edition, Editor Buyya, R., May 1999.

[16] Guinepain, S. and Gruenwald, L., Using Cluster Computing

to support Automatic and Dynamic Database Clustering,

International Workshop on Automatic Performance Tuning

(IWAPT), 2008.

[17] McCormick, W. T. Schweitzer P.J., and White T.W.,

Problem Decomposition and Data Reorganization by A

Clustering Technique, Operation Research, Vol. 20, No. 5,

September 1972.

[18] Wesley W. Chu and I. Ieong, A Transaction-Based

Approach to Vertical Partitioning for Relational Database

Systems, IEEE Transactions on Software Engineering, Vol. 19,

No. 8, August 1993.

[19] Navathe, S. and Ra M., Vertical Partitioning for Database

Design: A Graph Algorithm, ACM Special Interest Group on

Management of Data (SIGMOD) International Conference on

Management of Data, 1989.

[20] Papadomanolakis, S., Dash, D. and Ailamaki, A., Efficient

Use of the Query Optimizer for Automated Physical Design,

Proceedings of the 33rd International Conference Very Large

Data Bases (VLDB), September 2007.

[21] Li, L., and Gruenwald, L., Autonomous Database

Partitioning Using Data Mining on Single Computers and

Cluster Computers, International Database Engineering &

Applications Symposium (IDEAS), August 2012.

[22] Li, L., and Gruenwald, L., Self-Managing Online

Partitioner for Databases (SMOPD) – A Vertical Database

Partitioning System with a Fully Automatic Online Approach,

International Database Engineering & Applications

Symposium(IDEAS), October 2013.

[23] Amossen R, Vertical Partitioning of Relational OLTP

Databases using Integer Programming, Data Engineering

Workshops (ICDEW) of IEEE 5th International Conference on

Self Managing Database Systems (SMDB), 2010.

[24] Das, S., Agrawal, D., and Abbadi, A. E. ElasTraS: An

Elastic Transactional Data Store in the Cloud. In USENIX Hot

Cloud, June 2009.

[25] http://oscer.ou.edu.

[26] Garcia-Alvarado, C., Raghavan, V., Narayanan, S. and

Waas, F.M., Automatic Data Placement in MPP Databases, Data

Engineering Workshops (ICDEW) ofIEEE7th International

Conference on Self Managing Database Systems (SMDB),

2012.

[27] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu,

S. Madden, H. Balakrishnan, and N. Zeldovich, Relational

Cloud: A Database as a Service for the Cloud, in Conference on

Innovative Data Systems Research (CIDR), pp. 235–240, 2011.

[28] www.microsoft.com/sql-server.

[29] www.oracle.com/Database.

http://www.tpc.org/
http://oscer.ou.edu/

