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Abstract 
 

Distributed databases on cluster computers are widely 

used in many applications. With the volume of data 

getting bigger and bigger and the velocity of data getting 

faster and faster, it is important to develop techniques 

that can improve query response time to meet 

applications’ needs.  Database vertical partitioning that 

splits a database table into smaller tables containing 

fewer attributes in order to reduce disk I/Os is one of 

those techniques.  While many algorithms have been 

developed for database vertical partitioning, none of them 

is designed to partition the database stored in cluster 

computers dynamically, i.e., without human interference 

and without fixed query workloads. To fill this gap, this 

paper introduces a dynamic algorithm, SMOPD-C, that 

can autonomously partition a distributed database 

vertically on cluster computers, determine when a 

database re-partitioning is needed, and re-partition the 

database accordingly. The paper then presents 

comprehensive experiments that were conducted to study 

the performance of SMOPD-C using the TPC-H 

benchmark on a cluster computer. The experiment results 

show that SMOPD-C is capable of performing database 

re-partitioning dynamically with high accuracy to provide 

better query cost than the current partitioning 

configuration. 
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1. Introduction 
 

For both centralized databases stored in a single 

computer and  distributed databases stored in cluster 

computers, self-managing database design is becoming 

more and more important to many applications. This is 

because with the structure of data getting more and more 

complex, the size of data getting bigger and bigger, and 

the velocity of data is getting faster and faster, it is not 

feasible to ask users to manage all the settings in a 

database by themselves. Self-managing database systems 

are thus needed.  Self-managing database algorithms 

cover multiple database research areas including self-

managing database indexing ([2] and [3]), self-managing 

database caching [4], self-managing database partitioning 

[5], self-tuning database parameters [6], etc. In this paper 

we present a novel technique, SMOPD-C, for self-

managing database partitioning of distributed databases 

stored in cluster computers.  

Today with database size getting bigger and bigger like 

those in bio-science, finance and medicine, if the database 

is not organized properly, such time overhead could yield 

unacceptable query response time. Vertical partitioning 

and horizontal partitioning are two major database 

partitioning techniques which can considerably improve 

query response time when physical database design is 

performed [7]. Today, most database systems support 

horizontal partitioning [8]. The common horizontal 

partitioning approaches that are used by most database 

developers are range partitioning and hash partitioning 

[12]; but it is rare to find a database system that has a 

sophisticated algorithm, especially a dynamic algorithm, 

to support vertical partitioning without human 

interference for distributed databases stored in cluster 

computers.  

Since the first vertical partitioning algorithm [17] was 

developed in early 1970s, a number of different types of 

vertical partitioning algorithms have been proposed, such 

as [11], [13], [18], [19], [20] and [23]. One common 

feature among these algorithms is that they use a fixed 

workload to generate the partitioning solution for 

database tables. If users want to re-partition the database 

tables, they have to review the query log files to select 

recent queries which they believe important in order to 

perform the re-partitioning task. So these algorithms are 

called static vertical partitioning algorithms. It is time-

consuming to review the query log files. If the DBA does 

not have solid physical database design knowledge or is 

not careful enough, the workload used to re-partition the 



database tables might not be accurate and will even 

generate a worse partitioning solution.  To solve this 

problem, some dynamic vertical partitioning algorithms 

([5] and [23]) have been proposed in recent years.  

    A dynamic vertical partitioning algorithm has the 

ability to monitor the incoming queries and automatically 

re-partition the database tables when their partitions do 

not perform well any more. The algorithms [5] and [23] 

are dynamic and designed for a centralized database 

stored in a single computer. However, in recent years, 

cluster computers have been widely adopted by many 

organizations to handle their distributed databases. A 

cluster computer consists of a collection of interconnected 

stand-alone computers working together as a single, 

integrated computing resource [15]. A network composed 

of many cluster computers can provide excellent 

computing performance for distributed databases with low 

cost. So how to optimize the physical database design on 

a cluster computer system becomes extremely important, 

and database partitioning on a cluster system is one of 

those important research topics in the physical database 

design area. Unfortunately, the algorithms presented in 

[5] and [23] do not give any clue on that. In order to fill 

the gap, a novel vertical partitioning algorithm called 

SMOPD-C is presented in this paper. It is a dynamic 

algorithm providing multiple vertical partitioning 

solutions and designed for a distributed database system 

running on a cluster computer. The paper also presents the 

results of the experiments that are conducted to study the 

performance of SMOPD-C using the TPC-H benchmark 

[9].  

The rest of the paper is organized as follows.  Section 

2 discusses the related work.  Sections 3 and 4 present 

SMOPD-C and its experimental results, respectively.  

Finally Section 5 concludes the paper with future 

research. 

 

2. Related Work 
 

    A good number of algorithms that can vertically 

partition databases on a single computer have been 

proposed in the literature.  Some of them are static ([11], 

[13], [16], [17], [18] and [19]) and some of them are 

dynamic ([1], [5] and [22]). A few algorithms exist to 

partition distributed databases on cluster computers ([21], 

[24], [26], [14] and [16]).   

    In [24], a database schema level partitioning algorithm, 

called ElasTras, was introduced. The key idea of database 

schema level partitioning is that for a large number of 

database schemas and applications, transactions only 

access a small number of related rows which can be 

potentially spread across a number of database tables. 

ElasTraS takes the root database table of a tree structure 

database schema as the primary partitioning database 

table and other nodes of the tree as the secondary 

partitioning database tables. The primary partitioning 

database table is partitioned independently of the other 

database tables using its primary key. Because the 

primary database table’s key is part of the keys of all the 

secondary database tables, the secondary partitioning 

database tables are partitioned based on the primary 

database table’s partition key. Then all partitions will be 

spread across several Owning Transaction Managers, 

which own one or more partitions and provide 

transactional guarantees on them. Analyzing a database 

schema is much more difficult than analyzing a database 

table and this algorithm is generally configured for static 

partitioning purposes. 

    In [26], the authors proposed an algorithm called 

FINDER that aims to find the optimal data distribution 

policy for a set of database tables. The assumption of this 

algorithm is that the workload is given and the future 

workload should be very similar to the one used by the 

algorithm; so it is a static algorithm. For a given database 

table set T = {T1, …,Tt}, this algorithm can find the 

distribution policy D = {X1, …, Xt} where Xi is a set of 

attributes (usually they are the primary keys) and Ti is 

distributed based on Xi. The tuples of a database table 

will be assigned to different segments according to the 

hash value of Xi. This algorithm is used to statically and 

horizontally partition the database tables. 

Generally an OLAP application contains lots of many-

row aggregates and likely benefit from parallelizing its 

queries on multiple sites and exchanging small sub results 

between the sites after the aggregations. It means that the 

queries happening on such system are usually very 

complex. In an OLTP application, on the other hand, there 

are many short queries with no many-row aggregates or 

few-row aggregates and the queries only gather all 

attributes from the same site. It means that the queries 

happening on such system are usually very simple. The 

Amossen algorithm [14] is a partitioning algorithm used 

only on OLTP applications. In [14] the authors present a 

cost model and then use simulated annealing to find the 

close-to-optimal vertical partitioning with respect to the 

cost model. In this algorithm, the queries must be very 

simple and have to avoid breaking single-sitedness. So we 

can also regard this algorithm as a static algorithm. 

    In [16] and [21], a table level partitioning algorithm, 

called AutoClust, was presented. This algorithm uses 

query optimizer to generate partitioning solutions. 

According to the authors’ ideas, multiple partitioning 

solutions are selected from the candidate partitioning 

solution pool. Every future incoming query will be routed 

to the computing node containing the partition that gives 

the best estimated query cost for the query execution. 

There are 7 steps in the AutoClust algorithm when it 

works on cluster computers. In Step 1, an attribute usage 

matrix is built based on a query set indicating which 

query accesses which attributes. In Step 2, the closed item 

sets (CIS) [10] of attributes are mined. An item set is 

called closed if it has no superset having the same support 



which is the fraction of queries in a data set where the 

item set appears as a subset [10]. CIS can tell us which 

attributes are accessed by the same set of queries. We 

want to keep such attributes in the same partition together 

as much as possible. In Step 3, augmentations to add the 

primary key of the original database table to each existing 

closed item set are done to form the augmented closed 

item set (ACIS) which is a combination of CIS and the 

primary key; then duplicate ACIS are removed. In Step 4 

an execution tree is generated where each leaf represents 

a candidate vertical database partitioning solution. In Step 

5, the solutions are submitted to the query optimizer of 

the database system in order to determine what solutions 

are better. In Step 6, the suitable solutions are distributed 

to different computing nodes so that each node carries a 

solution. Finally, a query routing table, which maps each 

query type to a unique computing node that has the best 

partitioning solution for that specific query type, is built 

so that a query can always be routed to a node with the 

best partitioning solution (the detail information of how to 

construct the query routing table can be found in [21]). 

This algorithm uses a fixed query set as the algorithm 

input and mines CIS from that query set to generate 

multiple partitioning solutions. This algorithm runs only 

once; if users want to do re-partitioning they have to 

monitor the database performance and trigger AutoClust 

by themselves. So this algorithm is a static algorithm, too.  

To the best of our knowledge, while there are static and 

dynamic database vertical portioning algorithms designed 

for databases on a single computer and some static 

algorithms for databases on cluster computers.  There 

exists no partitioning algorithm designed to vertically and 

dynamically partition database tables on cluster 

computers. In the next section we present our SMOPD-C 

algorithm, the first vertical partitioning algorithm that can 

dynamically partition distributed databases stored in a 

cluster computer. 
 

3. SMOPD-C 
 

In SMOPD-C, we treat all computing nodes as a whole 

system together. One computing node will be used as a 

control node to count how many queries have been 

processed by the cluster computer so that SMOPD-C can 

start to check the performance trend for each computing 

node in the cluster computer once enough queries are 

collected on it. We use the estimated query cost to 

represent the query response time. For each computing 

node, if a database table’s current partitions’ average 

estimated query cost of the current query set is larger than 

the average estimated query cost of the old query set that 

is used to generate the current partitions for this database 

table, then we say that the performance of the current 

partitions of this database table might not be good any 

more. If the performance of a database table’s partitions 

on the majority of the computing nodes is not good, then 

we say the average performance of the entire cluster 

computer is not good. We measure the average 

performance of all computing nodes and decide whether 

re-partitioning is needed or not. If the average 

performance is bad, the control node will trigger Filtered 

AutoClust, which is an advanced version of AutoClust 

[16], to repartition the corresponding database table. 

From the description above, we can see there are two 

major components in SMOPD-C: the current partitions’ 

performance checking component and the database re-

partitioning component.  The current partitions’ 

performance checking component is deployed on every 

computing node. The major function of this component is 

to monitor the performance trend of the current partitions 

for each node and make the correct re-partitioning 

decisions. The database re-partition component is 

deployed on the control node. The major function of this 

component is to invoke the Filtered AutoClust algorithm 

to statically partition distributed database tables on a 

cluster computer using the table set and query set 

collected by the current partitions’ performance checking 

component.  

In the following two subsections we will describe how 

each component works using an example. In the example 

we deploy the TPC-H benchmark database [9] on a 

cluster computer with 8 computing nodes. The TPC-H 

database benchmark consists of twenty two query types 

and eight database tables, ORDERS, CUSTOMER, 

LINEITEM, PART, SUPPLIER, PARTSUPP, REGION 

and NATION; however, in our research we use only the 

first six tables as the last two tables are too small to 

benefit from partitioning.  We show how our SMOPD-C 

algorithm works on the PART database table which has 

the following schema PART (P_COMMENT, 

P_PARTKEY, P_BRAND, P_CONTAINER, P_SIZE, 

P_TYPE, P_NAME, P_MFGR, P_RETAILPRICE). 

Before we run this algorithm, we need to partition the 

PART database table once. The query set we use is 

randomly selected from the TPC-H query types. The 

partitioning solutions we got are S1 and S2 as listed 

below. 

Candidate solution S1: [{P_COMMENT, 

P_PARTKEY}, {P_MFGR, P_PARTKEY}, 

{P_PARTKEY, _RETAILPRICE}, {P_BRAND, 

P_PARTKEY, P_SIZE,P_TYPE}, {P_CONTAINER, 

P_PARTKEY}, {P_NAME, P_PARTKEY}].  

Candidate solution S2: [{P_COMMENT, 

P_PARTKEY}, {P_MFGR, P_PARTKEY}, 

{P_PARTKEY, P_RETAILPRICE}, {P_BRAND, 

P_CONTAINER, P_PARTKEY}, {P_NAME, 

P_PARTKEY}, {P_PARTKEY, P_SIZE}, 

{P_PARTKEY,P_TYPE}]. 



Table 1. Estimated query costs of two partitioning solutions on different nodes 

Node Candidate 

Solution 

Est. cost 

(Query 8) 

Est. cost 

(Query 9) 

Est. cost 

(Query 14) 

Est. cost 

(Query 15) 

Est. cost 

(Query 16) 

Est. cost 

(Query 19) 

Node1 S1 354 339 354 354 1054 339 

Node2 S2 246 339 246 2135 250 339 

Node3 S1 354 339 354 354 1054 339 

Node4 S2 246 339 246 2135 250 339 

Node5 S1 354 339 354 354 1054 339 

Node6 S2 246 339 246 2135 250 339 

Node7 S1 354 339 354 354 1054 339 

Node8 S2 246 339 246 2135 250 339 

Table 2. Query set used to re-partition database tables 

Query 

No. 
Freq. % 

Average 

Physical Read 

Ratio 

Query 

Count 
Query Text 

1 14.5% 27% 36 SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY…… 

2 6.7% 50% 16 SELECT L_RETURNFLAG, L_LINESTATUS, SUM(L_Q…. 

3 9.3% 50% 23 SELECT L_ORDERKEY, SUM(L_EXTENDEDPRICE…… 

4 9.9% 51% 24 SELECT O_ORDERPRIORITY, COUNT(*) AS ORDER…… 

5 12.6% 50% 31 SELECT N_NAME, SUM(L_EXTENDEDPRICE * (1 - L_DIS…… 

6 3.6% 50% 9 SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS…… 

7 10.3% 50% 25 SELECT SUPP_NATION, CUST_NATION, L_YEAR…… 

8 5.8% 61% 14 SELECT O_YEAR, SUM(CASE WHEN NATION = 'BRAZIL'…… 

9 7.1% 57% 17 SELECT NATION, O_YEAR, SUM(AMOUNT) AS SUM_…… 

10 3.7% 50% 9 SELECT C_CUSTKEY, C_NAME, SUM(L_EXTENDED…… 

11 9.7% 47% 24 SELECT PS_PARTKEY, SUM(PS_SUPPLYCOST * PS_AV…… 

13 2.9% 51% 7 SELECT C_COUNT, COUNT(*) AS CUSTDIST FROM …… 

15 3.9% 5% 10 SELECT P_BRAND, P_TYPE, P_SIZE, COUNT(DISTINCT …… 

     

    The way of deploying the two partitioning solutions on 

the cluster computer is shown in Table 1. In Table 1 we 

can see the estimated cost of each query for each 

computing node. 

    Once the current partitions are constructed, SMOPD-C 

can be started.  Below are the details of the two 

components of this algorithm. 

 

3.1.  Current Partitions’ Performance Checking   

Component 
 

This component running on each computing node 

monitors the most recent queries processed by that 

computing node. This process can be done by reading the 

system views which contain the query information (for 

example, in SQL Server [28], the system view is 

SYS.DM_EXEC_QUERY_STATS; in Oracle [29] the 

system view is V_$SQLAREA). Then this component 

will calculate how many queries it needs to collect so that 

it can ensure that there are enough physical read mainly 

queries to be analyzed.  Physical read mainly queries are 

those queries which access most data from hard disk 

rather than main memory [22]. Once the component 

collects enough physical read mainly queries, it will use 

this query set to estimate the performance of the current 

partitions of each database table on each node. If the 

performance of a database table’s partitions on the 

majority of the computing nodes is not good, this database 

table will be passed to the database re-partition 

component on the control node for re-partitioning 

preparation. The process can be summarized in the 

following steps using the example mentioned at the 

beginning of Section 3. 

    Step 1: estimate the number of queries N that needs to 

be collected using the formula  

    
  

        

  
   [22], where    is the precision,    is 

the function of confidence level α, fn is the ratio threshold 

of number of queries that satisfies physical read ratio 

threshold of a query. We randomly select 60% of the 

query types from the TPC-H benchmark query type set 

with a random frequency for each query type. So we get 

the query type set as shown in Table 2. 

Step 2: collect queries’ information (query id, physical 

read ratio, logical read ratio, count, query context) from 

the system views of the DBMS on each computing node 

until N queries are collected. 

Step 3: simplify and filter queries, and put the result 

queries into a set FQS. Simplifying queries rewrites each 

query into a simple format which contains only the 

original table name followed by the attributes accessed by 

the query, and filtering queries removes logical mainly 

read queries and outlier queries from the query set as 

logical read mainly queries and outlier queries will not be 

impacted by database partitioning [22]. 

Step 4: evaluate the performance of the current 

partitions for each database table on each computing 

node. In this step the new average estimated query cost 

for the current partitions on each computing node is 

calculated and shown in Table 3. We can see that the 

current partitions’ performance is getting worse due to the 



query set changes on node 1, node 3, node 5, node 7 and 

node 8.  

Step 5: evaluate the average performance of each 

database table on all nodes and put the database table 

whose current partitions’ average performance on more 

than half of the nodes is not good any more in a set T on 

the control node. 

From Table 3 we can see that for the PART database 

table, 62.5% of the computing nodes do not perform well 

using the current partitions and should be re-partitioned. 

The algorithm of this component is shown in Figure 1. 

Table 3. Different cost results of the partitioning 
solutions on different nodes 

Node Candidate 

Solution 

New Average 

Cost 

Current 

Average Cost 

Total 

Cost 

Node1 S1 53 30 689 

Node2 S2 11 36 286 

Node3 S1 42 30 672 

Node4 S2 20 36 420 

Node5 S1 42 30 672 

Node6 S2 32 36 832 

Node7 S1 42 30 672 

Node8 S2 37 36 851 

 

Input parameters: 
1. Physical read ratio threshold of a query- r 

2. The ratio threshold of number of queries that satisfies r- fn 

3. Query frequency threshold- ft (a query must occur at least 
ft percent in the whole query set) 

4. Precision-    
5. Confidence level- α 

Output:  

database table which needs re-partitioning and the physical read 
mainly query set 

Step1: calculate N which is the number of  queries that need to be 

collected 

1 
    

  
        

  
 

 

Step 2: monitor the queries that are processed on each node since 

the last partitioning until N queries are reached 

2 while less than N queries have been processed 

3   continue monitoring 

4 end while 

Step 3: simplify and filter queries, put the result queries into a set 

FQS 

Step 4: evaluate the performance of current partitions for each 

database table on each node. 

5 let pi to be the performance of the current partitions of a 

database table on node i  
6 set pi to 1 if the performance is still good, otherwise set it to 0 

Step 5: evaluate the average performance of each database table 

on all nodes 

7 if  
∑    

   

 
    , where n is the total number of computing 

nodes 

8   invoke Filtered AutoClust of the database re-partitioning 
component on the control node 

9 else 

10   goto step 2 
11 end if 

Figure 1. Algorithm for the current partitions’ 
performance checking component 

3.2. Database Re-Partitioning Component 

This component is used to re-partition the database 

tables that are recorded due to bad performance of their 

current partitions. The Filtered AutoClust algorithm is 

invoked when the performance of a database table’s 

partitions on the majority of the computing nodes is not 

good. Filtered AutoClust is an improvement of AutoClust 

[21], a static vertical partitioning algorithm based on 

closed item set mining which we have described in 

Section 2.  Filtered AutoClust improves AutoClust’s 

execution time by removing unnecessary closed item sets, 

removing over-partitioned candidate solutions and 

distributing the remaining candidate solutions to the query 

optimizers on the computing nodes so that the query 

optimizers can estimate the query costs for the candidate 

solutions in parallel. Filtered AutoClust consists of the 

following steps: 

     Step 1: generate the attributes usage matrix. 

 Step 2: generate the set of attribute set As and the 

corresponding frequency set Fs for each query based on 

the attribute usage matrix. 

Step 3: mine the closed item sets from the matrix 

generated in Step 1.  

Step 4: filter the CIS set based on As and Fs in order to 

remove unnecessary CIS. 

4.1. Remove the attribute set from As whose 

frequency is below the average frequency.  

4.2. For each attribute set Asi in the new As remove 

its subset in the CIS set to form the new CIS set.  

     4.3. Union the new As and the new CIS set to get the 

final CIS set. 

Step 5: augment each subset in the final CIS set by 

adding the primary key to form the augment closed item 

set (ACIS).  Remove the duplicate subsets in the ACIS 

set. 

Step 6: generate the execution tree where each leaf 

represents a candidate vertical partitioning solution. 

    Step 7: distribute the candidate vertical partitioning 

solutions in the round robin order to each computing node 

to calculate the aggregate cost (average estimated query 

cost) for each solution using the query optimizer on each 

node. Then send the solutions with their costs back to the 

control node. 

    Step 8: rank the solutions in increasing order based on 

their aggregate costs and remove those solutions the costs 

of which are larger than the cost of No Partition. 

    Step 9: implement the solutions resulted from Step 7 

according to the increasing order of the solutions’ 

aggregate costs so that the best solution is implemented 

on the first node, the second best solution is implemented 

on the second node, and so on. 

Step 10: construct the query routing table for the 

solutions implemented in Step 8 so that the system can 

know which query should be executed on which node. 
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Run Steps 1-2 of AutoClust for one node to generate the 

attribute usage matrix and CIS set; 
Create the maximum attributes set As for each type of query 

and the corresponding frequency set Fs from the attribute 

usage matrix; 
Set filter query frequency threshold fi as 100%/Fs.size; 

//find out the important queries  

For each frequency Fsi in Fs 
      if Fsi< fi then 

            remove the corresponding sub attribute set in As 

      End if 
End for 

//filter CIS set 

For each set CISi in CIS 
    if CISi is a subset of any set in As then 

            remove CISi from CIS 

      End if 

End for 

//expand CIS by adding As to it to avoid losing attributes 

Union As and CIS to form the final CIS  
Run step 3-4 of AutoClust for one node to generate the set S of 

all possible partitioning solutions; 

Distribute solutions in S in round robin order to each 
computing node 

For each computing node 

Calculate the average query estimated cost for each solution    
and send all solutions with their average query estimated  

cost back to control node 

End for 
Run step 2-5 of AutoClust for cluster computers to finish the 

best solutions implement on each computing node. 

Figure 2. The Filtered AutoClust algorithm on 
cluster computers 

The pseudo code of the Filtered AutoClust algorithm is 

shown in Figure 2.  

    Once we re-partition the PART database table, we get 

the following partitioning solutions S1_new and S2_new 

as the follows: 

    New partitioning solution S1_new: 

[{P_COMMENT,P_PARTKEY},{P_CONTAINER,P_P

ARTKEY},{P_PARTKEY,P_RETAILPRICE},{P_BRA

ND,P_PARTKEY,P_SIZE,P_TYPE},{P_MFGR,P_PAR

TKEY}, {P_NAME,P_PARTKEY}] 

    New partitioning solution S2_new: 

[{P_COMMENT,P_PARTKEY},{P_CONTAINER,P_P

ARTKEY},{P_PARTKEY,P_RETAILPRICE},{P_BRA

ND,P_PARTKEY},{P_MFGR,P_PARTKEY,P_SIZE,P_

TYPE}, {P_NAME,P_PARTKEY}] 

These two new solutions will be implemented on 8 

computing nodes in a round robin order, i.e. S1_new will 

be implemented on node 1, node 3, node 5 and node 7; 

S2_new will be implemented on node 2, node 4, node 6 

and node 8. The query routing table will be reconstructed 

according to the new partitioning solutions.  

 

4. Experimental Performance Studies 
 

    In this section we present our experiment results 

comparing the performance of the new partitions 

generated by SMOPD-C and that of the current partitions. 

Our test was conducted on the cluster computer OSCER 

BOOMER [25] at the University of Oklahoma. We use 

the TPC-H benchmark [9] database tables and queries for 

our test, and all the TPC-H database tables are fully 

replicated on the Oracle database system on the cluster 

computer. We set the five parameters in SMOPD-C, a 

(confidence level), ca (precision), r (physical read ratio 

threshold), fn (ratio threshold of number of queries that 

satisfies r), and ft (query frequency threshold) to 95%, 

5%, 20%, 20% and 100%, respectively. 

 

4.1.  Impact of Number of Computing Nodes 

 
In this experiment we study the impact of number of 

computing nodes. We use the PART database table as the 

test database table. We first measure the final estimated 

query cost for the current partitions based on the new 

query set and then measure the average estimated query 

cost for the new partitions based on the new query set. If 

the average estimated query cost of the new partitions is 

less than the average estimated query cost of the current 

partitions with the same number of computing nodes, then 

we say that the re-partitioning action was successfully 

done; otherwise the re-partitioning action is an 

unnecessary run. The test results presented in Figure 3 

show that when the number of computing nodes 

increases, the average estimated query costs of both the 

current partitions and the new partitions decrease for the 

PART database table. This is because all computing 

nodes are running in parallel and less work will be 

processed by each computing node if more computing 

nodes are available. For the same number of computing 

nodes, the average estimated query cost of the new 

partitions is always less than the average estimated query 

cost of the current partitions.  This means that our 

algorithm is always able to find out when re-partitioning 

is needed and the re-partitioning results always provide 

better query response time than the current partitions. 

 

Figure 3. Impacts of the number of computing 
nodes for the PART database table 

 

4.2. Impact of Different Table Sizes 

In this experiment we study the impact of the database 

table size by measuring the performance for the six 
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largest tables in the TPC-H benchmark. We set the 

number of computing nodes to 8. From Figure 4 we can 

see that there is no performance improvement for the 

ORDERS database table. This is because the performance 

of more than half of the computing nodes is still good 

even the query set has been changed for  the ORDERS 

database table, so re-partitioning is not triggered for this 

database table; the new partitioning solution of the PART 

database table gives the best performance improvement 

comparing with its current partitioning solution; the 

average estimated query cost improvement for an 

individual table is from 8% to 74%;  and the average 

improvement for all database tables together is 38%. 

From the test results we can see that our algorithm works 

well on cluster computers. 

 

 

Figure 4. Impacts of different database table 
sizes on 8 computing nodes 

  

5. Conclusions 
 

    In this paper, we presented an efficient algorithm, 

SMOPD-C, which can dynamically partition a distributed 

database vertically on cluster computers. SMOPD-C 

keeps monitoring the most recent queries processed by 

each computing node and reading the related query 

information (query id, query context, physical read ratio, 

logical read ratio, and query count) from the system views 

until enough physical read queries are collected. Then 

SMOPD-C uses the query set collected, passes it to the 

query optimizer to calculate the current partitions’ 

average query estimated cost, and compares this cost with 

the old cost based on the old query set which was used to 

generate the current partitions. If the new cost is bigger 

than the old cost on the majority of the computing nodes, 

then SMOPD-C will invoke the Filtered AutoClust 

algorithm that applies the attribute-usage matrix and 

closed item set mining concepts on the new query set to 

re-partition the corresponding database table, producing 

one or more new vertical partitioning solutions.  SMOPD-

C will then implement the new partitioning solutions on 

different computing nodes and repeat the process to 

continue monitoring the most recent queries to make the 

next re-partitioning decisions. The experimental results 

using the TPC-H benchmark and the Oracle database 

system on a cluster computer show that SMOPD-C 

algorithm can make suitable decisions for re-partitioning 

action at the correct time, and can accurately generate one 

or more better re-partitioning solutions based on the most 

recent query set.  

For future work, we plan to extend our research in 

several directions.  In the re-partitioning process, there are 

two major overheads in our current algorithm. The first 

overhead is the computation work in order to find out all 

closed item sets for a particular database table based on a 

specific query set. The second overhead is that some 

useless temporary partitions will be physically created in 

order to evaluate the estimated query cost for a particular 

partitioning solution. Those two overheads can consume a 

lot of time when the algorithm is running.  However, 

since our algorithm is running on cluster computers, those 

two overheads can be reduced by parallelizing the 

computation work across many computing nodes.  This 

task will be included in our future work.  In addition, we 

will extend SMOPD-C to relational clouds [27]. In a 

relational cloud, the working environment is a resources 

sharing and multi-tenants environment. The partitioning 

and re-partitioning actions for one tenant may impact the 

virtual machine-hardware assignments and the query 

performance of other tenants. SMOPD-C will need to be 

modified to address this issue in order to satisfy the 

service level agreements (SLAs) for all tenants. 
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